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Recent years have seen an increasing trend in developing 3D action recognition methods.
However, despite the advances, existing models still suffer from some major drawbacks

including the lack of any provision for recognizing action sequences with some missing

frames. This significantly hampers the applicability of these methods for online scenarios
where only an initial part of sequences are already provided. In this paper, we introduce

a novel sequence-to-sequence representation based algorithm in which a query sample

is characterized using a collaborative frame representation of all the training sequences.
This way, an optimal classifier is tailored for the existing frames of each query sample,

making the model robust to the effect of missing frames in sequences (e.g. in online
scenarios). Moreover, due to the collaborative nature of the representation, it implic-

itly handles the problem of varying styles during the course of activities. Experimental

results on three publicly available databases, UTKinect, TST fall, and UTD-MHAD,
respectively show 95.48%, 90.91%, and 91.67% accuracy when using the beginning 75%

portion of query sequences and 84.42%, 60.98%, and 87.27% accuracy for their initial

50%.

Keywords: Human Machine Interaction; 3D Action Recognition; Contributive Represen-

tation based Reconstruction.

1. Introduction

Human Action Recognition (HAR) is one of the fundamental problems in computer

vision and automatic surveillance that has been widely used in many applications

such as interactive games, smart houses, care robots, automated behavioral moni-

toring, and video captioning. From the view point of modeling the kinematic topol-

ogy, HAR shares a great deal of properties with the areas like gait recognition,

keystroke dynamics, and signature analysis. However, there is a major difference, a

HAR system aims to answer the question ”what is happening in a scene?” without

∗Corresponding Author.
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paying attention to the functor while other methods aims to recognize the identity

of actors. Despite the breadth of research carried out in recent years, some problems

of HAR systems still remain unsolved. These problems can be divided into three

main groups; (1) how to acquire the most suitable type of data, (2) how to localize

the interesting parts of sequences, and (3) how to model the kinematic topology of

actions.

Traditional methods mostly focused on RGB video cameras. Despite the sim-

plicity and high speed, such streams are dramatically influenced by such factors as

scene occlusion, cluttered background, viewpoint variation and non-uniform illumi-

nation.

This causes the community’s attention to be directed at 3D sensing approaches.

The primary models mainely focused on wearable sensors attached on human body.

While these methods have been very successful for alleviating the above mentioned

shortcomings, also suffer from their own drawbacks which are listed as following;

limitations in acquiring data from a distance (due to wires and batteries), the need

for cooperation from users (impossibility to be used in people monitoring with-

out their knowledge), and restriction on subject’s movements. To overcome these

challenges, some researches focused on multi-camera based approaches. These ap-

proaches utilize the intrinsic parameters and relative positions of multiple cameras

to extract the 3D positions of a scene. Despite the alleviation of wearable sensors’

shortcomings, these methods are very time consuming and also suffer from some

difficult-to-set parameters. In recent years, the advent of real-time depth sensors

(in particular Microsoft Kinect) could overcome all these shortcomings, making a

fundamental change in the way of recognizing the actions captured under complex

environment. These sensors utilize an infrared launcher to provide a sense of depth

in the framework of a 2D-stream. Although, such representation of depth simplifies

the process of the recognition (by removing the information on dressing and scene

details), it still depends on some disturbing factors like body mass variations and

still requires an impressive volume of memory. Inspired by human ability in detect-

ing actions from skeleton trajectories, some researchers were encouraged to develop

such an aptitude as a computer vision task. Besides, in 2011, Shotton et al. [1, 2]

developed a real-time strategy for body joint estimation from depth-streams which

further helped fulfil the realization of real-world action recognition systems.

From the view point of feature representation, HAR algorithms can be mainly

disaggregated into three groups; in the first category, the spatio-temporal charac-

teristics of a sequence is represented by a single feature vector. These features can

then be used as input to any off-the-shelf dimensionality reduction or classification

algorithm. In the second category, actions are modeled as a set of multiple time

series. Then, modeling of their temporal characteristics are relegated to a dynamic

matching strategy. The methods in the third category represent sequences using a

set of initially learned key poses and classify them by histogram based algorithms

or Hidden Markov Models (HMMs).

Despite the great success achieved, all the existing action recognition algorithms
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suffer from two major drawbacks; In one hand, they have no provisions for deal-

ing with transient changes in the speed (removing some frames from sequences) or

style (where some parts of an action is similar to parts of a training sample and

some others are alike to parts of another sample in the same class) of performing

actions. On the other hand, incorporating attention mechanism is only limited to

deep learning strategies, where the performance is remarkably influenced by the

shortage of 3D data.

In addition, in spite of the remarkable advances in offline scenario, online activity

recognition still remains a challenging task which has been less developed in the

literature. This type of recognition refers to identifying an action using a limited

number of frames (usually the first part of a sequence) instead of the whole action.

It is clear that the main goal of automatic activity recognition is to provide a proper

reaction in the same time as or even faster than any human. Therefore, like a hu-

man model, it is required for machines to recognize the ongoing actions in the early

stages before losing the opportunity for a proper reaction. This has very important

implications for many situations like monitoring or protecting humans from harms.

As an example of the importance of online recognition, consider the robot-based

elderly monitoring, where recognizing a falling action would be valuable only before

its completion and not after the fact. Though like humans, machines also do not

always require to get all the estimates right while it is not scientifically achievable

because many actions have significant initial motion similarities. Note that, it is

often sufficient to get the correct prediction among the top estimates, to properly

penalize or encourage the subsequent reactions.

Unfortunately, there is a notable lack of studies on online activity recognition

via skeletal information. To the best of our knowledge, there are only five published

works that have mostly raised the issue, but addressed it with the traditional idea

of localized alignment that has been originally developed for dealing with the issue

of temporal ordering in offline recognition tasks. Among these methods, the study

in [48] is the most related work that has been specifically developed for use in on-

line scenarios. The work tries to find the canonical frame of a query sequence that

has the maximum similarity to a specific class of actions. However, using only one

frame to represent an action causes it to lose the valuable temporal information of

data, which significantly hampers the applicability of this method in recognizing ac-

tivities with complex spatiotemporal patterns. Moreover, this mechanism does not

support a human interpretable justification because there would be a contradiction

in collecting a video stream in one hand, and on the other hand, disregarding its

temporal information. In addition, missing the canonical frame causes the algorithm

to fail. For the works in [34] and [49], the reason behind the ability to use in online

mode is related to the ability of dynamic matching strategies (finite observability

matrix of the linear dynamic modeling for [34], and dynamic time warping for [49])

in comparing two signals with unequal lengths. Another issue of DTW (Dynamic

Time Warping) is with the role of ending points in the aligning process. Silva et
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al. [50] showed that only 6% of different additional prefix for a signal may cause a

70% error in its DTW alignment with respect to the original signal. In comparison,

the works in [44] and [45] proposed to use a piece-wise matching strategy to lo-

calize the aligning of a truncated query sample with a complete training sequence.

Such a scheme can properly deal with the latency issue of sequences, however it is

highly sensitive to the suitable choice of window size. In fact, it requires one of the

selected windows from the training samples to exactly match the truncated query

signal which is a very challenging task.

Accordingly, this paper aims to propose a linear representation based 3D ac-

tion recognition algorithm called Contributive Representation based Reconstruction

(CRR) that highly alleviates the influence of missing frames (transient changes in

the speed or using only a partial trajectory of actions) on the recognition process.

This way, our method is enabled to be applied for online activity recognition where

only an initial part of query sequences are provided. In addition, CRR incorporates

all the frames of training sequences into the reconstruction of each query sample,

resulting in a robust representation against the style change of subjects over time.

For this purpose, each action sequence is first encoded as two set of spatial and

temporal time series. To avoid any heterogeneity, temporal attributes are only ap-

plied as a set of constraints on the reconstruction coefficients of the spatial series

(instead of direct combination which is used in the most of the state-of-the-art al-

gorithms). The existing linear representation algorithms have a common drawback.

They are only applicable for the signals of the same size. To address this problem,

we propose a sequence-to-sequence representation model that represents a weighted

combination of a query sample as a weighted linear combination of all the train-

ing sequences. This way, the idea of linear representation can be extended to the

problems of time series where sequences are not required to have exactly the same

length.

In a nutshell, the main contributions of this paper is as follows:(1) Unlike the

traditional HAR algorithms, our method seeks the optimal classifier for the cur-

rent frames of each query sequence, making it suitable for use in online activity

recognition tasks. (2) Our method represents each query sample by using the frame

combination of various training sequences, leading to a more robust representation

against the style change of subjects over time. (3) To the best of our knowledge,

our method is the first attempt to develop a sequence-to-sequence linear represen-

tation based algorithms. (4) Unlike deep learning or pose based HAR strategies, our

method does not rely on massive training data or a challenging task of determining

a set of key poses. (5) our method can be easily extended to a nonlinear version us-

ing the idea of kernel trick (Section 3.3). (6) the reconstruction coefficients of query

samples introduce an attention mechanism into the recognition process of CRR. As

far as we know, it is the first time that such mechanism is introduced in a shallow

learning based strategy. A set of extensive experimental results for online activity

recognition demonstrates the superiority of our method against the-state-of-the-art
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approaches.

The rest of the paper is organized as follows. In Section 2, we propose a brief

review on the related works for the skeleton based action recognition. Section 3 de-

scribes the sparse and collaborative representations for image based applications.

Section 4 presents the proposed CRR approach for skeleton based action recogni-

tion. Experiments are conducted in section 5 and section 6 concludes the paper.

2. Related works

This section provides a short review on the current practices of recognizing actions

from skeleton data, discusses their limitations and analyzes their improvements.

Because of different motivations and ideas, this review is conducted from two dif-

ferent perspectives; (1) the way of representing the sequences, and (2) the strategy

of temporal encoding.

2.1. Representation model

From this viewpoint, available methods can be disaggregated into three main cate-

gories; (i) geometrical representation, (ii) manifold techniques, and (ii) deep learn-

ing. -Geometrical representation:

The idea dates back to 1995, when Campbell et al. [3] utilized the joint informa-

tion of skeletons for recognizing ballet moves. They first represented each movement

as a set of points in a phase space. Then, a unique curve, with low-order polynomi-

als, is fitted into a subset of this space. Finally, the maximum correlation between

the curve models is used for classification. This way, the model only consider the

spatial characteristics of sequences, disregarding the temporal ones, which makes

the model much simpler, but at the cost of losing some valuable information. Hus-

sein et al. [4] used the covariance matrix of joint trajectories to characterize some

daily living activities. Motivated by the idea of temporal pyramids, they exploited

a hierarchy of the matrices to incorporate temporal orders into the recognition pro-

cess. Xia et al. [5] calculated the histograms of body skeletons by counting the joints

falling into a set of predefined spatial bins. The K-means algorithm is used to gener-

ate a set of categorical posture vocabularies. The visual words of these vocabularies

are modeled by a set of class-specific HMMs which are then voted on to perform

classification. In [6], a concatenation of the spatial position, speed and acceleration

was utilized to describe a set of pose descriptors. Qiao et al. [7] proposed a local

action descriptor called Trajectorylet that characterised the location of joints as

well as their velocity and displacement information in some short time intervals.

They also introduced a discriminative version of their method by exploiting a set

of exemplar-SVMs trained on candidate Trajectorylets. Yang et al. [8] utilized the

path theory to learn a signature from the statistical and dynamic characteristics of a

sequence. Seddik et al. [9] proposed to integrate multiple descriptors including 3D

joint positions, temporal gradients, joint pair-wise distances, Euler joint-rotation
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angles, and inter-bone rotation quaternion angles in order to enhance the discrimi-

native ability of feature representation. They further applied PCA on the resultant

feature vectors as a remedy for the curse of dimensionality problem. Luvizon et al.

[10] proposed to characterize each sequence using the relative positions and dis-

placement vectors of skeleton joints and used a combined strategy of the K-means

clustering, dimensionality reduction, and VLAD representation to acquire more re-

liable features. These feature vectors are finally mapped into a discriminative space

and classified by using the KNN classifier. Huang et al. [11] proposed to extract the

discriminative parts of skeletons using the Out-of-Bag (OB) error estimation of the

Random Forest (RF) classifiers trained on the features of skeleton parts. Finally,

only joints with high discrimination power are selected as feature descriptors. Jiang

et al. [12] presented an algorithm to select a set of more informative joints and used

their relative positions to describe motion trajectories. Ding et al. [13] represented

each action using a set of discrete symbol sequences. Then, action is modeled by

feeding these sequences to a set of Profile HMMs. In [14], normalized per-limb ori-

entations were calculated as the features of each sequence. They further divided

the sequences into several pose and motion segments and represented them using a

set of multi-layer codebooks. Finally, Random Forest (RF), SVM, and Nave Bayes

Nearest Neighbor (NBNN) classifiers were used for classification. Ohn-Bar et al.

[15] characterized each action by pairwise affinities between limb-specific relative

angles in the spherical coordinate system. The method in [16], utilized the Gaussian

mixture model to encode a set of skeletal quads to a Fisher vector. To incorporate

the temporal orders into the encoding process, a hierarchy of FVs were extracted

at multilevel splits of sequences. Lin et al. [17] characterized each skeleton using

the averages velocity of body parts and utilized a graph model to encode the tra-

jectories. In [18], a concatenation of the pair-wise joints differences, atomic motion

property of each joint, and offset feature of skeletons was used to describe each ac-

tion. Then, PCA was applied for reducing the dimensionality of the feature vectors

and Nave Bayes Nearest Neighbor was used for classification. Azis et al. [19] intro-

duced a weighted averaging fusion scheme to merge the skeletal data of two or more

camera views and claimed to obtain about 10% improvement over the traditional

single viewpoint strategies, but at the expense of a heavy skeleton tracking cost.

Ofli et al. [20] focused on the role of informative joints in recognizing specific classes

of actions. In [21], the normalized distances between skeleton joints and torso are

considered to describe the sequences. The K-means algorithm was then applied to

select the main postures of each sequence and multiclass SVM with Gaussian kernel

was used as classier. Mokari et al. [22] proposed to use Fisher Linear Discriminant

Analysis (LDA) for categorizing the frames of each action into a set of pre-defined

body states. The actions were then characterized as a sequence of these states and

modeled by using a Hidden Markov Model (HMM). The method in [23] proposed

to extend this idea with a windowing strategy to remove the interstitial frames

that do not belong to any of the pre-defined body states. Wang et al. [24] offered

a framework to construct a combined bag-of-word feature representation of poten-
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tial energy, kinetic energy, direction variation, and spatial information for skeleton

joints. The main disadvantage of these methods is that, such low-level features are

usually engineered for some particular types of actions, while there is no guarantees

of success if they are applied for other types of activities. -Manifold techniques:

Recent findings show that better accuracies can be achieved if the geometry of

non-Euclidean manifolds is incorporated into the spatiotemporal modeling of action

sequences. Accordingly, lots of manifold based techniques have been proposed in the

past decades which can be broadly categorized into two groups (because manifold

based learning is an off-the-shelf strategy, silhouette and RGB based techniques are

also included in this categorization): (a) mapping of frame-set, and (b) mapping

of dynamic systems. In the first category, each frame of action is represented as

a point on a typical manifold and temporal modeling is performed on the mani-

fold structure. In [25], Kendall’s shape theory was used for mapping frames on a

spherical manifold. Then, distance between two trajectories is calculated using an

innovative geodesic-DTW based technique. They also proposed two parametric AR

and ARMA models for the tangent space projections of shape sequences so as to

resolve the nonvalidity of these models on non-Euclidean manifolds. In [26], quare-

root elastic representation algorithm [27,28] was utilized to represent sequences

as closed curves in a shape space. Then, similar to [25], two trajectories on this

manifold could be compared using a geodesic-DTW. In addition, a graphical-based

HMM is also presented to model the trajectories using the high order statistical

characteristics of their variations.

Unlike the frame mapping, methods in the second category aim to produce

temporal features before characterising the geometry of manifold. Turaga et al.

[29] utilized the ARMA model for characterizing a sequence on a Grassman mani-

fold and then classify the models using the Procrustes Distance Metric (PDM) or

kernel density functions. In [30], Harandi et al. used infinite-dimensional Covari-

ance Descriptors (CovDs) in a Hilbert space to map a trajectory on a manifold

of Symmetric Positive Definite (SPD) and then utilized the properties of Bregman

divergences [31] for comparing each two CovDs. Motivated by the theory of block

Hankel, Zhang et al. [32] utilized the Gram matrices to embed sequences on a set of

Positive Definite (PD) Riemannian manifolds. Then, four distance-like metrics in-

cluding Affine Invariant Riemannien, Log-Euclidean Riemannian, Jensen-Bregman

Log-det Divergence, KL-Divergence were used for comparing the embedded trajec-

tories on the manifolds. The method in [33] used a modified High Order Singular

Value Decomposition (HOSVD) to factorize the third order tensor representation

of action sequences on a Grassmann manifold. They also applied the concept of

tangent bundles on the Grassmann manifold to calculate the distance between two

action sequences. Slama et al. [34] utilized the observability matrix of ARMA model

for embedding an action on a Grassmann manifold. Then, motivated by the con-

cepts of class specific tangent space and tangent bundle, two Truncated Wrapped

Gaussian (TWG) and Local Tangent Bundle SVM (LBTSVM) models were pro-

posed for classification on this manifold. Cherian et al. [57] used a Rank Pooling
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technique on a Riemannian manifold embedded in the reproducing kernel Hilbert

space for recognizing actions. The major drawback of these methods, however, is

that they need some simplifying assumptions about the geometry of the manifold,

which may not reflect the actual distribution of data, particularly for databases

with large number of actions and too wiggly distribution. -Deep learning:

Currently, deep learning seems to be the main stream of research on pattern recog-

nition methods. Reviews of the literature reveal that Recurrent Neural Network

(RNN) and its cousin Long Short-Term Memory (LSTM) network are the most

used architectures in the field of 3D action recognition. This comes from the ma-

chine state nature of these networks that can easily capture the dynamic structure

of actions in addition to their contextual information. In this context, Du et al. [35]

proposed a hierarchical RNN framework to fully characterize the multi-part struc-

ture of body skeletons. At the first layer, skeleton was partitioned into five major

parts including two hands, two feats, and a trunk. Then, each part was fed to a

Bidirectional RNN (BRNN). On next layers, the outputs of these networks were

hierarchically stuck and then fed to further bidirectional networks. Finally, classi-

fication was performed by fully concatenating the representations of the last layer

and feeding the result into a softmax one. Zhu et al [36] proposed a regularized

LSTM framework to incorporate the conjunction and discriminative information

of joints into the learning process of an LSTM network. Veeriah et al. [37] incor-

porated spatio-temporal information, derived from the derivative of sequences, in

the learning process of an LSTM network. They found that the resultant network

learns the salient dynamics of an action much faster than the conventional LSTM.

Liu et al. [55] used the contextual information of action sequences to push LSTMs

toward learning more informative joints. Liu et al. [56], proposed an alternative

framework of spatio-temporal LSTM. For this purpose, two sequences of actions

over time and labels are respectively considered as temporal and spatial inputs of

a 2D LSTM network. Some researchers also utilized the Convolutional Neural Net-

works (CNNs) [38-40] to remedy the overfitting problem of RNNs (LSTMs) which is

mostly induced by the shortage of training data. However, unlike the manifold and

geometrical based techniques, the success of deep neural networks is heavily reliant

on massive training data, while the current 3D action databases are too small.

2.2. Encoding Strategy

Temporal information of sequences can be encoded in two different ways (i) holistic

and (ii) atomistic. In holistic strategies, sequences are treated as a whole so that

their pose ordering information could not be retrieved from their encoding models.

This causes them to fail to recognize partial trajectories from learned activity mod-

els. In contrast, atomistic methods take advantages of an object-oriented ensemble

coding strategy which allows for preserving the ordering information of skeletons

into a learned model, resulting in an ability to recognize actions from partial trajec-

tories which is referred to as online recognition. It is noteworthy to point out that
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this sense of online recognition is quite different from the meaning introduced in

the literature [64-66] which refers to recognizing different actions from unsegmented

streams of data in a continuous manner.

Different from these works, our proposed method aims to focus on recognizing

actions with some missing frames in their sequences. A novel sequence-to-sequence

collaborative learning strategy is introduced to extend the idea of the Linear Rep-

resentation (LR) to higher dimensional video processing. Furthermore, unlike the

previous online strategies, it does not simply fit a learning model for each tempo-

ral segment, but instead concurrently uses the contributive representations of all

the training sequences to describe an unknown query sample and therefore pro-

vide a robust representation against the style variations a subject over the time of

performing an activity while has much lower computational cost.

3. Consensus Representation based Algorithms

Sparse Representation based Classification (SRC) [53] and Collaborative Represen-

tation based Classification (CRC) [54] are two most related works to our method

which are briefly reviled in this section. Sparse representation is a fundamental the-

ory of compress sensing upon which each signal can be passably reconstructed with

as few as possible training samples. Let X = [X1, X2, ..., XC ] ∈ Rd×n be an over-

complete dictionary composed of the sub-dictionaries Xi = [xi1, xi2, ..., xini
]; i =

1, ..., C belonging to C difference classes, where n =
∑C
i=1 ni is the total number of

training samples, d is the dimension of feature space, xij ∈ Rd is the j-th sample

of the i-th class, and ni denotes the number of training samples belonging to the

i-th class.

Given a query sample y, SRC aims to encode it over the over-complete dictionary

X so that the following equation is approximately satisfied:

y = Xα = x11a11 + x12a12 + ...+ xCnC
aCnC

s.t. α̃ = argmin‖α‖0
(1)

where α = (a11, a12, ..., aCnC
)T denotes the sparse representation coefficient

vector and ‖.‖ stands for l0-norm which refers to the number of nonzero values

in the vector. Due to the noise, the equation y = Xα is rarely held in the real

world applications and hence is mostly revised into the form of ‖y − Xα‖2 < ε

to allow for some bounded representation noise. On the other hand, as such a l0
form of minimization problems is nonconvex and difficult to solve [52], it is often

approximated by an l1-term which results in a convex problem while almost satisfies

the condition of sparsity. Considering these issues, equation (1) can be rewritten as

follows;

α̃ = argmin‖α‖1 s.t. ‖y −Xα‖22 < ε (2)

According to the Lagrange multiplier theorem, this problem can be reformulated
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as the following unconstrained minimization form;

L(α, λ) = argmin‖y −Xα‖22 + λ‖α‖1 (3)

where λ is a scalar value. This problem has an analytical solution that is calculated

in an iterative manner [52]. Then, classification is performed by computing the de-

viation of the linear combination for the training samples of a specific class from

the query sample:

identity(y) = argmin(‖y −Xiαi‖22) (4)

where αi is the coefficient vector associated to the i-th class.

Though this method imputes the discriminative ability of the representation to

the sparseness achieved by the l1-norm minimization problem, Zhang et al. [54]

demonstrated that it will be almost preserved while using an l2-norm that alterna-

tively emphasizes on the collaborative use of samples. Such representation scheme

is referred to as Collaborative Representation (CR) and formulated as follows;

α̃ = argmin‖α‖2 s.t. ‖y −Xα‖22 < ε (5)

Unlike the sparse representation, collaborative manner has a closed-form solu-

tion that is achieved by differentiating the equation with respect to α and equating

the derivative to zero:

α = (XTX + λI)−1Xy (6)

Despite the success of SRC/CRC in signal (image) processing, they do not provide

any provisions for such video-stream based applications as action recognition. As a

solution one may compress them into one dimensional vectors so that to be applied

to SRC/CRC algorithm. However, such a coding scheme does not incorporate the

dynamic information of streams into the recognition process. On the other hand,

due to the different intrinsic natures, integrating spatial information and motion

dynamics into a single feature vector does not seem to be an elegant trick. In

addition, it neglects the role of single frames and therefore can not deal with the

issue of composite videos made of the frames belonging to different subjects.

4. Contributive Representation based Reconstruction

The central goal is to derive a set of discriminative geometrical features from single

skeletons and then to classify the sequences based on the best frame-to-frame sim-

ilarity between the training and testing sequences. As geometrical features, we use

relative angles between the skeleton joints in which the angles reference points are

specifically designed for each limb, resulting in a more discriminative ability com-

pared to the algorithms that utilize some fixed reference angles [5,15,67]. As the

classification scheme, we try to reconstruct a linear expression of frames of a test

sample as a linear expression of whole frames of the training samples. According to
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our minimization scheme, those training and test frames with maximum similarities

will be assigned to largest reconstruction coefficients. In this way, it brings three

major advantages: (1) For test sample, these coefficients determine the relevancy

of each frame in performing action. This way, we can simply ignore those assigned

almost negligible reconstruction coefficients. (2) The training sample whose frames

got the most reconstruction values is determined as the most similar specimen to the

test sequence. (3) similar frames in other training samples mitigate the influence of

the noisy frames in the most similar one leading to a more complete reconstruction

of the test sample.

4.1. Feature extraction

Given the 3D coordinate of skeleton joints, our method aims to characterize the

sequence using two distinct set of features including the spatial information of poses

(relative angles) and their corresponding motion dynamics (spatial displacement).

Then, the spatial set is directly used as the basis vectors of a linear representa-

tion model while motion dynamics are applied as their corresponding coefficients

(or vise versa). This way, such distinct-nature attributes could be integrated in a

more efficient manner than the direct combination used in the state-of-the-art al-

gorithms. To reduce the influence of disturbing factors like off-centric movements

and varying camera angles, each skeleton is preprocessed before extracting its main

characterising features. Accordingly, the hip joint of a skeleton is anchored to the

origin and its configuration is rotated so as to be parallel to the x-axis. A fur-

ther preprocessing is also performed to mitigate the issue of repetitive frames. To

do so, we utilize the concept of the kinetic energy in micro-motion patterns. Let

p
kf
j,i = {xj,i, yj,i, zj,i};i=1,...,n

j=1,...,m , p
1 = x, p2 = y, p3 = z be the coordinate of the

j-th joint at the i-th frame of an action sequence (in the aligned coordinate sys-

tem), where m denotes the number of tracked joints and n stands for the length of

the sequence. First, the energy of micro-motions is calculated over the consecutive

frames;

KE(i) =
m∑

j=1

3∑

kf=1

|pkfj,i+1 − pkfj,i | (7)

A frame is considered as repetitive if the kinetic energy of its transition is

less than a threshold value. However, KE is a content-dependent measure which

needs to be normalized so that applying a predefined threshold works with all the

sequences;

NKE(i) =
KE(i)−min(KE)

max(KE)−min(KE)
; i = 1, ..., n− 1 (8)

Finally, the frames with the normalized energy less than the threshold value (0.15

in this work) are removed from the sequence.

To encode the spatial features, each skeleton is represented with the relative
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angles of its projected joints on the three Cartesian planes xy, xz, and yz. First,

we utilize the position of head, torso, left- and right- shoulders, and also left- and

right- knees to define five reference points:

O
kf
1,i =

p
kf
head,i + p

kf
L.shoulder,i

2
, O

kf
2,i =

p
kf
head,i + p

kf
R.shoulder,i

2

O
kf
3,i =

p
kf
torso,i + p

kf
L.shoulder,i

2
, O

kf
4,i =

p
kf
torso,i + p

kf
R.shoulder,i

2

O
kf
5,i =

p
kf
L.knee,i + p

kf
R.knee,i

2

(9)

where f ∈ {1, 2, 3}, k1 = x, k2 = y; k3 = z. As the coordinate of these points varies

with the posture of skeletons, they are referred to as ’dynamic reference points’.

Then, the pairwise cosine distance of joints with respect to these anchors are con-

sidered as the spatial features of skeletons;

f
{k1,k2},v
j1j2,i

=
< ξk1,k2j1,v,i

, ςk1,k2j2,v,i
>

‖ξk1,k2j1,v,i
‖‖ςk1,k2j2,v,i

‖

ξk1,k2j1,v,i
=
(
pk1j2,i −O

k1
v,i p

k2
j1,i
−Ok2v,i

)T

ςk1,k2j2,v,i
=
(
pk1j2,i −O

k1
v,i p

k2
j1,i
−Ok2v,i

)T

(10)

where < ., . > stands for the inner product, j1, j2 ∈ {1, ...,m}, and i ∈ {1, ..., n}.
Finally, all the relative angles of the three Cartesian planes are concatenated to

form the spatial feature vector Fs;

F is =
(
f
{x,y},O1

11,i , f
{x,y},O1

12,i , ..., f
{y,z},O5

(m−1)m,i

)T
(11)

Moreover, a dynamic feature vector is also created using the displacement of joints

in consecutive frames;

F id =
(
px1,i+1 − px1,i, ..., pxj,i+1 − pxj,i, ..., pzm,i+1 − pzm,i

)T
(12)

The pseudo code of the feature extraction procedure is listed in Algorithm 1.

4.2. Coding Scheme

This section proposes a novel Contributive Representation based Reconstruction

(CRR) algorithm for recognizing action sequences from skeletal information.

Let D = [d1, ..., dN ] = [D11, ..., Dn1,1, ..., D1,C , ..., DnC ,C ] be a dictionary in-

cluding N =
∑C

e=1 ne training sequences belonging to C different classes, where

Dι,κ = [F1, ..., Fnr
] is the concatenation of nr spatial feature vectors (extracted by

the strategy described in section 4.1) corresponding to the skeleton poses of the

ι-th action in the κ-th class, (nr is the number of frames for this typical sequence),

and N is the total number of the frames in the dictionary. Given a query sequence
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Algorithm 1 Spatiotemporal feature representation of an action sequence

Input: Position of skeleton joints p
kf
j,i = {xj,i, yj,i, zj,i};i=1,...,n

j=1,...,m

Output: Spatial and temporal feature vectors of the sequence

for i=1:n do

# Calculate the position of the reference points using equation (9)

for j1=1:m do

for j2=1:m do

for {k1, k2} ∈ {x, y}{x, z}{y, z}, j1, j2 ∈ {1, ...,m} do
# Calculate the joint angles of each skeleton using equation (10)

# Calculate the spatial feature vector by concatenating all the

joint angles during the course of the action (equation (11))

# Calculate the temporal feature vector using equation (12)

end for

end for

end for

end for

Y = [y1, ..., ynY
] with nY frames, CRR aims to minimize the deviation between a

linear combination of its frames (
∑

piyi) and a linear combination of all the frames

in the dictionary (
∑

qidi);

min(‖
nY∑

i=1

piyi −
N∑

j=1

qjdj‖) (13)

This way, any linear combination of skeletons is treated as a valid representation

of an action. Therefore, the reconstruction coefficients are allowed to be arbitrary

shared among different classes which is not appropriate for such classification tasks

as action recognition. So, we need some constraints to be applied on the reconstruc-

tion coefficients to push them towards learning a class-specific solution. For this,

we introduce three constraints on the minimization problem of equation (13) which

incorporates the structural properties of classes into the linear representation of a

sequence;

(1)
∑

pi = 1 and
∑

qj = 1 to align the lower bounds of the linear combinations

(2) min‖P‖22 and min‖Q‖22 to allow correlated variables to enter the model

and avoid outliers to be incorporated into the reconstruction precess. Here

P = (p1, p2, ..., pnY
), and Q = (q1, q2, ..., qN ).

(3) min
∑

q2j‖H − U$‖22 to incorporate the dynamic structure of actions into

the reconstruction process. Here, j-th index belongs to the $-th sequence,

H and U$ are the down-sampled a frames of the temporal feature vec-

aThe sampling rate has to be determined empirically and in this paper is set to ensure the sequence

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJPRAI

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

PP
SA

L
A

 U
N

IV
E

R
SI

T
Y

 o
n 

06
/1

0/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 5, 2020 4:25 WSPC/INSTRUCTION FILE 2˙1˙2020

14 M. Tabejamaat, H. Mohammadzade

tors respectively for the query and $-th training sequences extracted by

equation (12): H ← F queryd and U$ ← F$d . This allows the dynamic infor-

mation of each sequence to be considered as a whole. To better explain the

role of this constraint, consider two sequences consisting of similar frames

but with different temporal orders, e.g., sequences of actions picking up an

object and placing down an object. Without this constraint, these two se-

quences obtain the same reconstruction coefficients, whereas by incorporat-

ing this constraint in the optimization, different reconstruction coefficients

are yielded which are appropriate for classification purposes.

Therefore, the optimization problem of CRR can be rewritten as follows;

min
p,q

(‖
nY∑

i=1

piyi −
N∑

j=1

qjdj‖)

min‖P‖22 min‖Q‖22

s.t.
∑

pi = 1
∑

qj = 1

min
∑

q2j‖H − U$‖22.

(14)

According to the Lagrange multiplier theorem, this constrained problem can be

reformulated in an unconstrained form;

min
P,Q

‖YP−DQ‖+ γ1‖P‖2 + γ2‖Q‖2 + γ3(1−
nY∑

i=1

pi)+

γ4(1−
N∑

j=1

qi) + γ5
∑

q2j‖H − U$‖22
(15)

Solving the above equation, we get the optimal coefficients of P and Q which

determine the importance of each skeleton (frame) in the recognition of the query

sequence. This way, the model learns which parts of sequences should be paid more

attention to. Rewriting this equation in a matrix form, we have:

min
P,Q

‖
(
Y −D

)(P
Q

)
‖+ γ1P

TP + γ2Q
TQ

+ γ3(1− eP) + γ4(1− tQ) + γ5
∑

q2j‖H − U$‖22
(16)

where e =
(
1, 1, ..., 1

)
∈ R1×nY and t =

(
1, 1, ..., 1

)
∈ R1×N are two horizontal

all-ones vectors. After some algebraic simplifications, we obtain a hyper-variable

length is 5.
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optimization problem as;

min
P,Q

‖
(
Y −D

)(P
Q

)
‖+

(
PT QT

)(γ1I 0

0 γ2I

)(
P Q

)

γ3(1−
(
e %
)
)

(
P

Q

)
+ γ4(1−

(
χ t
)
)

(
P

Q

)

+ γ5
∑

q2j‖H − U$‖22

(17)

Where % =
(
0, 0, ..., 0

)
∈ R1×N and χ =

(
0, 0, ..., 0

)
∈ R1×nY are all-zeros horizon-

tal vectors. Let A =
(
Y −D

)
, v =

(
P

Q

)
, B =

(
γ1I 0

0 γ2I

)
, l =

(
e %
)
, h =

(
χ t
)
.

Differentiating this equation and setting the result equal to zero, we get;

ATAv + vTBv + γ3(1− lv) + γ4(1− hv)

+ γ5diag(
(
% ,
(
‖H − U1‖, ‖H − U2‖, ..., ‖H − Un‖

))
)v = 0

(18)

As all the square matrices are invertible, this problem has a closed-form solution:

v = (ATA+B+

γ5diag(
(
% ,
(
‖H − U1‖, ..., ‖H − Un‖

))
)))−1(γ3l + γ4h)

(19)

Algorithm 2 Contributive Representation base Reconstruction

Input: Spatial training set D, spatial query set Y , dynamic training set F$d ,

dynamic query set F queryd

Output: Optimal coefficient vector

# Initialization e =
(
1, 1, ..., 1

)
, % =

(
0, 0, ..., 0

)
, t =

(
1, 1, ..., 1

)
, χ =

(
0, 0, ..., 0

)

# Down-sample the dynamic training set of each class and query sample U$ ←
F$d , H ← F queryd

# A←
(
Y −D

)

# B ←
(
γ1I 0

0 γ2I

)

# l←
(
e %
)

# h =
(
χ t
)

# Code Y over D by equation (19)

# Compute the reconstruction coefficients for each class

∀ν ∈ 1, ..., C, ACν = 1
n4o

∑
o∈νth class

4o;4o , (Qo|Qo > ζ max(Q)), where n4o

is the number of elements in the sequence 4o and ζ is a regularization parameter

# Assign Y to g-class if g = argmaxν
(
Avν

)

It is clear that the main cost is to solve the inverse term of ATA. Therefore, the

computational complexity could be almost estimated as O(N 3). Our codes were

written in Matlab and run on an Intel(R) Core(TM) i5 (3.4GHz) PC.
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4.3. Kernel CRR

Sometimes, data points are hard to linearly separate, especially when some of the

classes have the same direction distribution. In this case, it is better to nonlinearly

map the data into a higher dimensional space and then separate it in a linear man-

ner. Nevertheless, optimizing a separation model in an unknown high-dimensional

space is not an easy task. In contrast, kernel trick enables such models to be ap-

plied in an implicit high dimensional space without the need for computing the

coordinates of the data in that space, and thus has been widely applied to many

LR algorithms like PCA, LDA, SVM, LSDA, SRC, and CRC. However, unlike these

methods, CRR aims to classify the trajectories (and not single vectors) and there-

fore requires their points (frames) to be individually transformed into the Hilbert

space, leading the dimensionality of this space to be equal to the total number of

the frames in the database (N ).

Let φ be a nonlinear mapping from the space Rm to a high-dimensional space

RN ; φ : Rm −→ RN , so that

φ(yi) = (φ1(yi), φ2(yi), ..., φN (yi)) (20)

where φ(yi) is a point of the trajectory ϕ in the new space which is defied as follows;

ϕ = (φ(y1), φ(y2), ..., φ(ynY
)) (21)

Similarly, we project each frame of the dictionary D into the new space so that we

obtain;

Φ = (φ(d1), φ(d2), ..., φ(dN )) (22)

As each Now, defining the optimization problem of CRR on the new space, we get

the following equation;

min
P,Q

‖ϕP− ΦQ‖

s.t.
∑

pi = 1
∑

qj = 1

min‖P‖22 min‖Q‖22
min

∑
q2j‖H − U$‖22.

(23)

However, due to the high dimensionality, this equation is much harder to solve than

equation (14). To alleviate this problem, we define a coefficient matrix so that to

be a linear combination of the dictionary elements in the new space;

R = ΦZ = (φ(d1), φ(d2), ..., φ(dN ))(z1, z2, ..., zN ) (24)

where Z = (z1, z2, ..., zN ) is called the pesodu-transformation matrix. Multiplying

R to the first row of equation (23), we obtain;

min
P,Q

‖RTϕP−RTΦQ‖ = ‖ZTΦTϕP− ZTΦTΦQ‖ (25)
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As K(D,Y ) = ΦTϕ and K(D,D) = ΦTΦ, equation (25) can be reformulated as

follows;

min
P,Q

‖ZTK(D,Y )P− ZTK(D,D)Q‖ (26)

Removing ZT from both sides of the differential equation, the optimization problem

of CRR (in the reproducing kernel Hilbert space) can be finally written as follows;

min
a,b

‖K(D,Y )P−K(D,D)Q‖

s.t.
∑

pi = 1
∑

qj = 1

min‖P‖22 min‖Q‖22
min

∑
q2j‖H − U$‖22.

(27)

For classification, we calculate the average reconstruction coefficients for all

the action classes using ACν = 1
n4o

∑
o∈νth class

4o;4o , (Qo|Qo > ζ max(Q)),

where n4o is the number of elements in the sequence 4o and ζ is a regularization

parameter that allows suppressing the noisy contributions in the reconstruction

process. Then, we choose the class with the maximum average contribution as the

prediction label of the query sample Y . The update procedure of the method is

listed in Algorithm 2.

5. Experimental Results

This section provides the experimental frameworks for evaluating the performance

of our method on three publicly available databases; UTKinect [6] and TST [58],

and UTD-MHAD [59].

The UTKinect database includes 199 action sequences acquired from 10 subjects

where each action is performed twice. The actions include walk, sit down, stand

up, pick up, carry, throw, push, pull, wave and clap hands. All the sequences were

collected indoor using a Kinect depth camera at a distance of 4 to 11 ft with varying

lengths from 5 to 120 frames. The actions were carried out in a continuous manner

and then separated using manual segmentation which results in some latency in

movements. This issue along with the varying styles of subjects, and significant

variations of camera angle are the most challenges of this database.

The TST database was originally established for detecting falling action, yet it

includes a variety of daily living activities, making it also suitable for evaluating

action recognition tasks. TST was collected in 2015 by using a low noise Kinect

V2 sensor in an indoor environment and contains 264 sequences from 11 subjects,

performing 8 different actions. The actions include sit, grasp, walk, and lying down,

falling front, back, side and falling backward while ends up sitting. Compared to

UTKinect, TST provides four additional skeleton joints for hand fingers which are
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ignored in this work. The challenge of this database is more related to the falling

actions that are heavily influenced by the varying styles of subjects.

UTD-MHAD [59] includes 861 multimodal sequences (RGB, depth map, skele-

tal, and inertial sensor signals) from 8 different subjects (4 females and 4 males),

performing 27 actions in an indoor environment. All the depth maps have been

collected using a Microsoft Kinect camera at a frame rate of 30 fps. The database

contains actions from 3 different groups: (i) daily living activities (right arm swipe

to the left, right arm swipe to the right, right hand wave, two hand front clap, right

arm throw, cross arms in the chest, right hand knock on door, right hand catch an

object, right hand pick up and throw, walking in place, sit to stand, stand to sit),

(ii) hand gesture (right hand draw x, right hand draw circle (clockwise), right hand

draw circle (counter clockwise), draw triangle), and (iii) sport-training exercises

(basketball shoot, bowling (right hand), front boxing, baseball swing from right,

tennis right hand forehand swing, arm curl (2 arms), tennis serve, two hand push,

jogging in place, forward lunge (left foot forward), squat (2 arms stretch out)).

5.1. Experimental results in online mode

This section analyzes the efficiency of our proposed algorithm for online activity

recognition. For this purpose, we compare the performance of our method with two

state of the art algorithms proposed in [44] and [45]. The superior performance of

these methods compared to other works in [34], [48] and [49] have been already

demonstrated in the original papers. Regarding the work in [34], the offline recog-

nition rate provided by this method (88.5%) on the UTKinect database is much less

than the online recognition rate of our method achieved when using the beginning

75% portion of the frames (94.47%). Note that, online recognition rates reported in

the literature are always less than their corresponding offline accuracies. For other

rivals, in order to avoid any re-implementation uncertainty, the results are directly

reported from the original papers.

Following the strategy of Hayes et al. [45] for online recognition, we form our

training dictionary using the complete training sequences and then evaluate the

system by using the begining 25%, 50%, and 75% portions of query sequences. For

both UTKinect and TST fall databases, we conduct k-fold cross subject validation

strategy, where in each fold the samples belonging to one subject are excluded for

testing while the remaining ones are used to form the dictionary. In contrast, to

make a fair comparison with other studies, we apply two-fold cross validation pro-

tocol on the UTD-MHAD database where the sequences of odd subjects (only the

first trial of each subject) are used for training and all the trials of even subjects are

used for test. Note that, UTD-MHAD incudes some very subtle movements in which

temporal information are more discriminative than the spatial ones. Therefore, it
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Table 1: Our method vs. the state-of-the-arts on UTKinect database in online mode

% of sequence Our method SDSR RAPTOR

25 67.84% 70%< 79.4%

50 84.42% 72%< 83.1%

75 95.48% 85%< 84.7%

Table 2: Our method on TST database in online mode

% of sequence Our method

25 20.08%

50 60.98%

75 90.91%

Table 3: Our method on UTD-MHAD database in online mode

% of sequence Our method

25 55.79%

50 87.27%

75 91.67%

is more useful to reformulate equation (14) in the following form:

min
p,q

(‖
nY∑

i=1

pihi −
N∑

j=1

qjuj‖)

s.t.
∑

pi = 1
∑

qj = 1

min‖P‖22 min‖Q‖22
min

∑
q2j‖Y −D$‖22.

(28)

For all the databases, based on empirical parameter estimates, we set the regular-

ization parameters similarly as λ1 = 10−2, λ2 = 10−2, λ3 = 10−1, and λ4 = 10−1.

But differently we use λ5 = 2×10−3 for UTKinect and TST fall and λ5 = 2×10−5

for UTD-MHAD database. The classification parameter ζ, is set to 0 for UTKinect

and UTD-MHAD and 0.6 for TST fall. To avoid any overfitting, we reduce the

dimensionality of the dictionary and query sequences using PCA and LPP before

applying the main phase of CRR. Tables 1-3 show the online recognition rates of

our method compared with other state-of-the-art algorithms. As can be seen, our

method achieves satisfactory results and outperforms other rivals, if any, especially

when using a moderate number of frames.
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The confusion matrices of our method in different online scenarios are separately

illustrated in Fig. 1. The thing to notice is about the confusion matrix of the TST

using only the first 25% of the sequences where most of the actions are confused

with walk and grasp. That is because none of the actions in this database are

stationary and mostly start with a movement similar to walking. Note that the

detailed description of grasp action is ”walking and grasping an object from the

floor”.

An important issue is that, although part of the missclassifications occur due

to the alignment error between the complete content and a piece of a signal, but

another part is related to the loss of discriminative information in the truncated

part. Accordingly, we conduct another experiment to discriminate between the role

of alignment precision and the role of discriminative information in early recogni-

tion tasks. For this purpose, we truncate the training sequences according to the

truncation procedure of query samples. i.e. if we use the 25% of the initial part of a

query sample, the dictionary is also created by using the beginning 25% portion of

the training sequences. The recognition rates of this experiment are listed in Table

4. The confusion matrices are also shown in Fig. 2. One can compare the results

with Tables 1-3 and infer that a piece wise matching strategy would be more help-

ful for the more initial parts of sequences (that meets the results presented by the

works in [44] and [45]), but as the Fig. 2(c), 2(f), and 2(i) indicate, it is not very

suitable for larger portions of sequences (the truncated sample does not exactly fit

the selected window of the training sample).

Table 4: Performance of our method in online mode using similar truncated training

samples

Database 25 50 75

UTKinect 80.90% 86.43% 92.96%

TST 46.21% 71.97% 89.77%

UTD-MHAD 59.95% 89.58% 92.13%

In addition, we also evaluate the performance of our method in an offline sce-

nario where the entire frames of sequences are considered to be available. Splitting

of databases into the training and query sequences is also performed in the similar

way as performed in the online scenario. Tables 5-7 list the offline recognition rates

of our method compared with a set of the state-of-the-art methods respectively on

UTKinect, TST fall, and UTD-MHAD databases.

Abbreviations are as follows:

RR: Recognition rate, Ntr: Nature, Ex. Pr.: Experiment protocol, Alg. Pr.: align-

ment protocol, RP: Rank Pooling, RM: Recurrent Memory, FP: Fourier Pyramid,

OBARMA: Observability Matrix of ARMA model, PWM: Piece-Wise Matching.

LOSubO: Leave One Subject Out where in each fold, one Subject is excluded for
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                            (a)                                                                      (b)                                                                  (c) 

 
                            (d)                                                                      (e)                                                                  (f) 

 

 

(g) (h) 

(i) 

Fig. 1: Confusion matrices in different online scenarios for the (a) first 25% of query

sequences in UTKinect database, (b) first 50% of query sequences in UTKinect

database, (c) first 75% of query sequences in UTKinect database, (d) first 25% of

query sequences in TST database, (e) first 50% of query sequences in TST database,

(f) first 25% of query sequences in TST database, (g) first 25% of query sequences in

UTD-MHAD database, (h) first 50% of query sequences in UTD-MHAD database,

(i) first 75% of query sequences in UTD-MHAD database,
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                            (a)                                                                      (b)                                                                  (c) 

 
                            (d)                                                                      (e)                                                                  (f) 

 

 

(g) (h) 

(i) 

Fig. 2: Confusion matrices in different online scenarios using similar truncated train-

ing samples for (a) the first 25% of query sequences in UTKinect database, (b) the

first 50% of sequences in UTKinect database, (c) the first 75% of sequences in

UTKinect database, (d) the first 25% of sequences in TST database, (e) the first

50% of sequences in TST database, (f) the first 25% of sequences in TST database,

(g) first 25% of sequences in UTD-MHAD database, (h) first 50% of sequences in

UTD-MHAD database, (i) first 75% of sequences in UTD-MHAD database,

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJPRAI

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

PP
SA

L
A

 U
N

IV
E

R
SI

T
Y

 o
n 

06
/1

0/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 5, 2020 4:25 WSPC/INSTRUCTION FILE 2˙1˙2020

Contributive Representation based Reconstruction for Online 3D Action Recognition 23

Table 5: Our method vs. the state-of-the-arts on UTKinect database in offline mode

Method RR Ntr Ex. Pr. Year Alg. Pr.

ST-LSTM-FFNN [55] 97% Offline LOSeqO 2017 RM

GCA-LSTM [55] 97.5% Offline LOSeqO 2017 RM

GCA-LSTM-Att [55] 98.5% Offline LOSeqO 2017 RM

ST-LSTM-TGate [56] 97% Offline LOSeqO 2018 RM

KRP-FS [57] 99% Offline LOSeqO 2018 RP

LM3TL [42] 98.8% Offline LOSeqO 2016 DTW/FP

DMIMTL [43] 99.19% Offline LOSeqO 2017 DTW

His3DJ[5] 90.92% Offline LOSeqO 2012 HMM

SDSR[44] 96.97% Offline Twofold 2016 PWM

FisherPose[23] 89.0% Offline LOSubO 2017 HMM

DNLGF[62] 96.68% Offline LOSubO 2018 LieCrvs

LoGM[34] 88.5% Online LOSeqO 2015 OBARMA

SDSR[44] 88.89% Online Twofold 2016 PWM

RAPTOR[45] 92.1% Online LOSubO 2017 PWM

KCRR+PCA(600) 95.98% Online LOSubO - LR

KCRR+LPP(600) 95.47% Online LOSubO - LR

testing and the remaining subjects are used for training, LOSeqO: Leave One Se-

quence Out where in each fold, one sample is excluded for test and remaining ones

are used for training. Twofold: only once, half actions are used for training and

other half for test, LR: Linear Representation.

As can be seen, our method outperforms the atomistic rivals that has been eval-

uated under the same protocol (approximately 3.9% better than the performance of

RAPTOR). However, the results exhibit a relative superiority of the performance

for the holistic algorithms, which is mainly related to their ability in assimilating the

information of static poses into the discriminative frames of sequences. Moreover,

it has to be mentioned that, LOSubO protocol used in our experiments is far more

difficult than LOSeqO used in the most of the state-of-the-art algorithms, because

it evaluates the robustness of strategies against the style variation of subjects.

The confusion matrices of our method are also shown in Fig. 3. One can easily

find that the main confusions occur between ”throw and push”, and ”walk and

carry” for the UTKinect database, between ”sit and end up sit”, and ”lay and back

falling” for the TST database, and between ”bowling and lunge” for UTD-MHAD

database, which is largely due to their motion similarities.

5.2. Sensitivity Analysis

A significant advantage of our linear representation based method is its capability

of predicting actions even with a non-ideal estimation of skeleton joints. To validate
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Table 6: Our method vs. the state-of-the-arts on TST database in offline mode

Method RR Ntr Ex. Pr. Year Alg. Pr.

His3DJ[5] 70.83% Offline LOSubOb 2012 HMM

FisherPose[23] 88.64% Offline LOSubO 2017 HMM

SJOTT[47] 92.8% Offline LOSubO 2017 DTW

LoGM[34] 88.5% Online LOSeqO 2015 OBARMA

KCRR+PCA(600) 89.39% Online LOSubO - LR

KCRR+LPP(600) 91.66% Online LOSubO - LR

Table 7: Our method vs. the state-of-the-arts on UTD-MHAD database in offline

mode

Method RR Ntr Ex. Pr. Year Alg. Pr.

SOS [60] 86.97% Offline Two-fold 2018 MoP

JTM [38] 85.81% Offline Two-fold 2016 MoP

CNN-stream [61] 69.90% Offline Two-fold 2018 MoP

GMGE [63] 90.47% Offline Two-fold 2018 ARMA

KCRR + PCA(600) 90.05% Online Two-fold - LR

KCRR + LPP(600) 90.05% Online Two-fold - LR

this intuition, we evaluate our method on the UTKinect database. The experiments

are performed in online scenario where only the beginning 75% portion of each query

action has been observed. The setting used for data partitioning and the threshold

of non repetitive frames is the same as the previous section. The impact of the

non-ideal joint localization is simulated by adding up some Gaussian White Noise

(GWN) with zero mean and standard deviation ranging from 0.01L to 0.15L, where

L is the average length of the bones in the first frame of each action sequence, to

all the joints of query samples. Note that, the dictionary is constructed using the

original training samples. As can be seen from Fig. 4, the average recognition rate of

our method decreases with the increase of noise, however the amount of the drop is

quite different for each class of actions. According to the drop value, the classes can

be categorized into three groups: very sensitive (pull, clap hands), almost sensitive

(wave hands, walk, sit down, throw, push), and almost non-sensitive (pick up, carry,

stand up) to noise. This categorization indicates that, the more the movement of

skeletal center of gravity over the frames, the corresponding action will be more

robust to noise. How skeletal mass changes and how it associates with the robustness

of the method are shown in detail in Fig. 5. As can be seen, in such activities like

picking up and carrying objects, the added noise is negligible compared to the

movement of skeletal mass (at least in one direction), causing a high signal-to-noise

ratio in that direction which in turn allows for correct recognition of those noisy
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(a)                                                                                    (b) 

 
(c) 

Fig. 3: Confusion matrices for (a) UTKinect database, and (b) TST database, (c)

UTD-MHAD database in offline mode.

sequences. However, such activities as pulling and hand clapping do not follow this

kind of behaviour.

We also conduct another experiment to validate the usefulness of our method

against any abnormality in detecting actions (starting point and occurrence time

of an action in a video stream). For this purpose, we consider a very challenging

task, where on the one hand the starting point is mistakenly set k ∈ 1, .., 50 frames

before the occurrence time of actions, and on the other hand, only 75% of the

actions is considered to be performed. Therefore, we concatenate L noisy frames to

the beginning of query action sequences, but reconstruct them using the original

training samples. The noisy frames are exactly the same as the first frame of query

samples but with some GWN added. Figure 6 shows accuracy rates for different

numbers of noisy frames. As in the previous experiment, action sequences fall into

three categories: very sensitive (sit down, pull, and throw), almost sensitive (pick up,

walk, push), almost non-sensitive (stand up, carry, and clap hands, wave hands).

However, their categorization story is quite different from the joints localization

problem. Here, most of the recognition errors occur because (i) some frames of
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Fig. 4: The impact of imperfect estimation of joint locations on the performance of

CRR algorithm

an action are unintentionally created within the shifted version of an action from

another class (Fig. 7(a)), or (ii) assimilating the dynamic information of the main

frames to the faulty detected sequence, leading to no influence of the constraint of

equation (14) on its reconstruction coefficients (Fig. 7(b)).

6. Conclusion

This paper presented a novel 3D activity recognition scheme using the contribu-

tive representations of skeletal information. A frame-to-frame linear reconstruction

strategy termed CRR was exploited to compare time series with different lengthes

which provides an alternative for the traditional aligning methods such as DTW or

PWM. Unlike the traditional methods that combine the posture characteristics and

temporal statistics of skeletal data in the feature extraction phase, CRR incorpo-

rates the temporal information as a constraint on the reconstruction coefficients of

the posture information and therefore prevent a raw combination of two set of data

with different natures. Moreover, CRR represents a query time series collaboratively

over all the training sets and therefore provides a one-to-all matching strategy for

different classes leading to an ability to recognize the innovative actions with the

first part similar to the first part of a training action, and second part similar to the

second part of another training action in the same class. Experimental results on

three publicly available benchmark databases demonstrated the superiority of our

method compared to a set of state-of-the-art methods especially in online mode.
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Fig. 5: Which class of actions are more robust against the noise of the joint local-

ization. For pick up and carry the movement of skeletal mass in y-direction creates

distinct motion patterns that are not easily affected by the localization noise. In

contrast, lack of such a distinctive pattern makes pull and hand claps susceptible

to the noise.
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Fig. 6: The impact of imperfect action detection on the performance of CRR algo-

rithm
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Fig. 7: A visual interpretation of the impact of faulty action detection, (a) some of

the standing up frames are unintentionally created inside a faulty-detected standing

up sequence. (b) dynamic information of the original frames of a pull action is

assimilated to the noisy frames of a faulty detected sequence.
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